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ISABEL LONGBOTTOM

1. Introduction

We state and prove a generalisation of the Riemann-Roch theorem, for 1-dimensional (nonsingular, complete)
curves over any field, not necessarily algebraically closed. Notably, we are interested in finite fields. The chief
difficulties present in doing this are: first, to determine for what kinds of 1-dimensional curves will such a
generalisation make sense; second, defining the genus of such a curve since we may not have a topological genus;
third, finding an analogue of the sheaf of holomorphic 1-forms which has the properties of Serre duality, in the
situation where the curve is not analytic.

We begin by defining the curves we will be working with algebraically, and developing a notion of functions
and divisors on such a curve. We then progress to proving a version of Riemann-Roch without Serre duality,
and defining the genus of a curve. Finally, we prove the existence of a canonical class in the Picard group which
coincides with the usual sheaf of holomorphic 1-forms over the base field C, and for which Serre duality holds
in generality.

Throughout our discussion, we highlight the analogies with the case where the base field is C. It is assumed
that the reader is familiar with the development of the same theory in this special case, where the curve in
question is a compact Riemann surface.

2. Nonsingular Complete Curves

From a modern algebraic geometry perspective, a nonsingular complete curve is an integral scheme of dimen-
sion 1, all of whose local rings are regular, and which is proper over a base field k. Such a curve is projective
with one non-closed point, and its Zariski topology is the cofinite topology on the closed points. We give a
different — but equivalent — definition to allow us to work more concretely without building up the language
of schemes.

Definition 2.1. A valuation on a field L is a map v : L∗ → Z satisfying

(a) v(xy) = v(x) + v(y)
(b) v(x+ y) ≥ min{v(x), v(y)}

for every x, y ∈ L∗. We extend v to a map on L by setting v(0) =∞. Given a field extension L/k, a valuation
of L is trivial on k if v(k∗) = 0. Let V(L/k) be the set of surjective valuations of L which are trivial on k.

As a first example, the trivial homomorphism v = 0 is a valuation. To construct more interesting valuations,
one can consider the valuation at a maximal ideal in a Dedekind domain. Recall that a Dedekind domain is
a Noetherian ring with Krull dimension 1, such that the localisation at any maximal ideal is a local principal
ideal domain. In particular, every nonzero prime ideal is maximal and every ideal can be uniquely factorised as
a product of prime ideals.

Example 2.2. Let B be a Dedekind domain, and p ⊂ B a nonzero prime ideal. We define a valuation
vp : Frac(B)∗ → Z as follows. Given x ∈ B \ {0}, the ideal (x) factors as some product of prime ideals of
B. Let vp(x) be the exponent of p in this factorisation, which is a nonnegative integer. Then for an element
x/y ∈ Frac(B)∗, we define

vp(x/y) = vp(x)− vp(y).

This is well-defined because if we choose a different representative x′/y′ = x/y then x′y = xy′, so vp(x′)+vp(y) =
vp(x) + vp(y′). Also, this valuation is surjective, since by uniqueness of prime factorisation we have pn \ pn+1

nonempty for any positive integer n. Note that vp(x) ≥ 0 if x ∈ B, and if vp(x) = 0 then x /∈ p. This motivates
our next definition.

Definition 2.3. Let v be a non-trivial valuation of a field L. Define

Ov = {x ∈ L∗ | v(x) ≥ 0} t {0}, and Mv = {x ∈ L∗ | v(x) > 0} t {0}.
One can show that Ov is a local principal ideal domain andMv is its unique maximal ideal. Let kv := Ov/Mv

be the residue field.

For us, a complete nonsingular curve will have as its points the elements of V(L/k), endowed with the cofinite
topology. These correspond to the closed points in the usual scheme definition.
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Definition 2.4. Fix a base field k. A function field L/k is a field extension of transcendence degree 1, such
that every element of L which is algebraic over k lies in k itself. That is, k is algebraically closed in L.

Definition 2.5. Let k be a field. A nonsingular complete curve X/k over k is the set V(k(X)/k) endowed with
the cofinite topology, where k(X) is a field of transcendence degree 1 over k. Then k(X) is the field of rational
functions on X.

We think of the space geometrically, so an element p of X is called a point, and the corresponding valuation
is denoted vP . Think of Op := OvP as the functions defined at p, andMp :=Mvp as the functions vanishing at
p. An element α ∈ k(X) \Op is a rational function with a pole at p. The integer vp(α) is the order of vanishing
of α at p, and is negative when α has a pole at p.

The domain of a function α ∈ k(X) is the set of points p where α doesn’t have a pole. For an open set
U ⊂ X let OX(U) =

⋂
p∈U Op. This is the set of functions defined everywhere on U . Then OX is a sheaf on

X, called the structure sheaf, whose stalks are regular, given by Op. A global section is an element of OX(X),
that is a rational function defined everywhere on X.

We will require the additional hypothesis that OX(X) = k, that so the only globally-defined functions are
the constants. This condition ensures that L/k is a function field1.

Complete nonsingular curves will be our main object of study. Before discussing line bundles on these spaces
in the next section, we would like to develop the analogy between such spaces and compact Riemann surfaces.
As an easy first observation, every nonsingular complete curve has dimension 1, just as a Riemann surface is a
1-dimensional complex manifold.

A rational function on a nonsingular complete curve is the same animal as a meromorphic function on a
compact Riemann surface. Its domain is an open set, whose complement is finite and in particular discrete.
The global sections are the equivalent of holomorphic functions, since these are precisely the rational functions
which are defined everywhere. By assumption, the only holomorphic functions are the constants, that is elements
of the base field k. This hypothesis serves the same purpose as compactness for Riemann surfaces. One can
also show that any rational function on a complete nonsingular curve must have the same number of zeroes as
poles, counting multiplicity in a sense to be made precise in Section 3.

In fact, every Riemann surface can be realised as a complete nonsingular curve, in the sense that the mero-
morphic functions over any open set agree with those on the Riemann surface, although the analtic topology of
the Riemann surface is of course much finer. This realisation even captures the structure of the group of line
bundles (invertible sheaves) over the surface.

Example 2.6 (P1(C) as a nonsingular complete curve). Take the nonsingular complete curve X defined by
k(x)/k, so k(X) = k(x) is the transcendental field in one variable. We have a valuation v∞ given by degree, so
that v∞(f/g) = deg(g)−deg(f) for two polynomials f, g ∈ k[x]. One can show that all the surjective valuations
trivial on k except v∞ are valuations at maximal ideals in the ring k[x], so they correspond to irreducible monic
polynomials f ∈ k[x]. In particular, if k is algebraically closed then all irreducible polynomials are linear, so X
is in bijection with k t {∞}.

When k = C, this tells us that X is in bijection with the Riemann sphere. But we get much more than a
bijection as sets. The field of rational functions is k(x), consisting of global quotients of polynomials, and the
meromorphic functions of the usual Riemann sphere have exactly this form. Moreover, if we exclude v∞, then
the points of X are in bijection with C, and the set of globally defined functions is OX(X \ {∞}) = k[x]. This
is because a function defined at vx−z must have nonnegative valuation there, meaning x− z doesn’t appear in
the denominator. Hence the functions defined on X \ {∞} can have no linear factors in their denominator, so
are polynomials.

We can realise an elliptic curve (over C) in a similar way. Given an equation of the form w2 = f(z) defining
the elliptic curve, where f(z) is a monic cubic equation, we take the nonsingular complete curve X with rational
functions Frac(C[w, z]/(w2−f(z))). This simply encodes algebraically the fact that we want points (w, z) which
are solutions to the equation w2 = f(z). This field has transcendence degree 1 over C because it is a finite
extension of C(w). Points on X corresponding to maximal ideals (w−c0, z−c1) of C[w, z] where c20 = f(c1) form
a dense open subset of X, whose complement is finite. One can think of the complement as the points needed
to compactify the curve — these are the points lying in the projective closure of the points corresponding to
maximal ideals.

From now on, the term curve refers to a nonsingular complete curve, to avoid carying these qualifiers around
with us.

3. Divisors and the Picard Group

As in the case of Riemann surfaces, the group of divisors of a curve is the free abelian group on the points.
We denote this group Div(X/k) or Div(L/k), where L = k(X) is the field defining the curve X. This is also

1Any valuation trivial on k must be trivial on any element of L which is algebraic over k, so any element of L algebraic over k

lies in OX(X) = k.
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the free abelian group on the set of valuations V(L/k). We call a divisor effective if all its coefficients are
nonnegative. We get a divisor corresponding to any rational function, which we call principal, and which has
coefficients given by the order of the pole of the rational function at each point. However, defining the degree
of a divisor is more complicated than in the Riemann surface case — points have an associated degree, coming
from the degree of a particular field extension, and we need to weight our computation of the degree of a divisor
by the degrees of the points with nonzero coefficients.

We obtain a principal divisor from a rational function in L∗ via the following map, which sends each rational
function to a finite sum of points by Proposition VII.4.11 in [1].

div : L∗ → Div(L/k) = Div(X/k)

f 7→ div(f) := −
∑

v∈V(L/k)

v(f)xv

where xv ∈ X is the point corresponding to the valuation v.
It follows that div(f · g) = div(f) + div(g), so this map is a group homomorphism. We now take the Picard

group to be divisors modulo principal divisors, as in the case of a Riemann surface.

Definition 3.1. Let L/k be a field extension of transcendence degree 1. The Picard group, denoted Pic(L/k),
is the quotient of the group of divisors by the subgroup of principal divisors. We call the quotient map
cl : Div(L/k)→ Pic(L/k). We thus have the following exact sequence:

(3.1) 0→ ∩v∈V(L/k)O∗v → L∗
div→ Div(L/k)

cl→ Pic(L/k)→ 0.

Two divisors are called linearly equivalent if they are identified in the Picard group.
When we consider the curve X corresponding to a field extension L/k as in the previous definition, we have

by hypothesis that the global sections are precisely k. So writing Pic(X/k) = Pic(L/k) and L = k(X), the
above sequence becomes

(3.2) 0→ k∗ → k(X)∗
div→ Div(X/k)

cl→ Pic(X/k)→ 0.

In the context of algebraic geometry, the Picard group of a space is usually defined to be the quotient of the
group of locally principal divisors by the principal divisors, so that each equivalence class of divisors represents
an isomorphism class of line bundles on the space. For nonsingular complete curves, every divisor is locally
principal, so the definition we have given is equivalent to the usual one. Hence the Picard group of a curve is
the group of line bundles. The map cl is a group homomorphism, with addition of divisors corresponding to
tensoring line bundles.

We next consider degree. Over a Riemann surface, the degree of a divisor is taken to be the sum of the
coefficients. We will need a more sophisticated definition when working over a field k which is not algebraically
closed. We define the degree of a divisor which consists of a single point, and extend linearly.

Definition 3.2. Let p ∈ X/k be a point in a curve. Let v be the valuation associated to p, with residue field
kv = Ov/Mv. Then kv/k is a finite2 extension of fields, and we define deg(p) = [kv : k]. More generally,

deg

(∑
i

aipi

)
=
∑
i

ai deg(pi) =
∑
i

ai[kvi : k].

This definition agrees with the usual definition over a Riemann surface, since C is algebraically closed so it
has no nontrivial finite extensions. We state a few useful facts about the divisor and Picard groups.

Theorem 3.3 ([1], Thm VII.7.9). Let k be a field and X/k a curve. For any α ∈ k(X)∗, we have deg(div(α)) =
0.

As in the case of Riemann surfaces, the divisor corresponding to any rational function has degree 0. In
particular, any global section (which has no poles) has no zeroes, and therefore the divisor corresponding to any
global section is trivial. This justifies why the first term in each of (3.1) and (3.2) is the kernel of the map div.

It also follows from Theorem 3.3 that the degree of an element of the Picard group is well-defined, since
any two divisors in the same class differ by a principal divisor, which has degree 0. In fact, we obtain a group
homomorphism

deg : Pic(X/k)→ Z, cl(D) 7→ deg(D)

which is nontrivial because Div(X/k) contains some nontrivial effective divisors. But a nontrivial map to Z has
infinite image, and so the Picard group must be infinite. We prefer working with finite groups, which motivates
the following definition.

2See Corollary 10.11 in [1].
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Definition 3.4. Let X/k be a curve. Define Div0(X/k) to be the kernel of the degree map on Div, and
Pic0(X/k) to be the kernel of the degree map on line bundles. So Pic0(X/k) consists of all the degree zero
classes of divisors. It follows that the following sequence is exact.

0→ k∗ → k(X)∗ → Div0(X/k)
cl→ Pic0(X/k)→ 0.

In particular, the degree 0 divisors surject onto the degree 0 line bundles. To conclude this section, we discuss
a result specific to the case where k is a finite field. This is a corollary of Riemann-Roch, which we prove in the
next section.

Theorem 3.5 ([1], Thm VII.7.13). Let k be a finite field and X/k a curve. Then Pic0(X/k) is finite.

Proof sketch. Let d ∈ N and Picd(X/k) be the divisor classes of degree d. This is one of the cosets of the kernel

of the map deg, so in particular has the same cardinality as Pic0(X/k). So it is enough to show Picd(X/k) is
finite for some large enough d.

Consider the set of effective divisors of degree d, which we denote Effd(X/k), and the restriction of the class
map

cld : Effd(X/k)→ Picd(X/k).

It follows from Riemann-Roch that if d is large enough, then cld is surjective. See Remark 4.3. Hence it is
enough to show that for large enough d, the set Effd(X/k) is finite.

But in fact, Effd(X/k) is finite for all positive d. An effective divisor D of degree d must have the form∑
i ai deg(pi) for positive coeffients ai, and so in particular must have all |kvi | < deg(pi) ≤ d. We conclude

the proof by noting that there are finitely many valuations v ∈ V(L/k) such that |kv| ≤ d, when k is a finite
field. �

When k is a finite field, the number |Pic0(X/k)| is called the class number of the field k(X)/k or of the curve
X.

4. Riemann-Roch and Genus

As in the case of Riemann surfaces, the Riemann-Roch theorem provides an answer to the question of when
it is possible to find a rational function on a curve X/k with poles and zeroes as specified by a divisor. To make
this precise, we need a notion of genus for a curve over any field k, where we do not necessarily have a definition
of topological genus.

We have a natural partial order relation on Div(X/k), where D′ ≥ D if each coefficient of D′ is at least the
corresponding coefficient of D. Then we define

H0(D) = {α ∈ k(X) | div(α) ≤ D}.

In particular, for any nonzero α ∈ H0(D) the divisor D − div(α) ≥ 0 is effective. This means that if H0(D)
contains at least one nonzero rational function, then cl(D) is represented by an effective divisor. As is the case
for compact Riemann surfaces, it follows from the definitions that H0(D) = 0 for a divisor D of negative degree.

We next consider the vector spaces

L(D)p = {α ∈ k(X) | vp(α) ≥ − ordp(D)}

for each point p ∈ X, where ordp(D) is the coefficient of the point p in D. An element of H0(D) satisfies
this inequality at every point p ∈ X, so is zero in the quotient k(X)/L(D)p, for every p. This motivates the
following definition. Consider the map

φD : k(X)→
⊕
p∈X

(k(X)/L(D)p)

f 7→
⊕
p∈X

(f mod L(D)p).

Then the kernel of this map is H0(D), and to extend to an exact sequence we define H1(D) to be the cokernel.
We get an exact sequence

(4.1) 0→ H0(D)→ k(X)
φD→
⊕
p∈X

k(X)/L(D)p → H1(D)→ 0.

One can show that linearly equivalent divisors D,D′ with D′ = D + div(α) satisfy H0(D) ∼= H0(D′) and
H1(D) ∼= H1(D′), with the isomorphisms induced between the sequences (4.1) for D and D′ by multiplication
by α on k(X). Hence these definitions make sense on the Picard group. Before discussing Riemann-Roch, we
indulge a brief digression to relate (4.1) to sheaf cohomology of the corresponding element of the Picard group,
cl(D).
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On the Picard group, the groups H0(D) and H1(D) become the sheaf cohomology of the invertible sheaf
corresponding to cl(D), which we denote L(D). These are the only nonzero cohomology groups, since X has
dimension 1.

The invertible sheaf L(D) is defined on the open set U ⊂ X by

L(D)(U) = {α ∈ k(X) | vp(α) ≥ − ordp(D) ∀ p ∈ U}

and the vector spaces L(D)p we defined previously are the stalks of this sheaf. By comparing the two definitions,
we can see that the global sections are

H0(X,L(D)) = L(D)(X) = H0(D).

Let C denote the constant sheaf on X, whose sections over any open set are k(X). Then we have a short
exact sequence

0→ L(D)→ C → C/L(D)→ 0

coming from the natural inclusion L(D) ↪→C. The long exact sequence on cohomology induced from this
simplifies to

(4.2) 0→ H0(X,L(D))→ k(X)→ H0(X,C/L(D))→ H1(X,L(D))→ 0

after noting that H0(X,C) = k(X) and H1(X,C) = 0. Then (4.1) and (4.2) are naturally isomorphic. One
gets that both H0(D) and H1(D) are finite-dimensional k-vector spaces.

Definition 4.1. Let D be a divisor on a curve X/k. Then h0(D) := dimH0(D) and h1(D) := dimH1(D).
The genus g = g(X) of the curve X is defined to be h1(X,OX) = h1(0).

We are now in a position to state the Riemann-Roch Theorem for nonsingular complete curves.

Theorem 4.2 (Riemann-Roch, see [1] Thm IX.3.8). Let X/k be a curve. Then for every divisor D ∈ Div(X/k),

(4.3) h0(D) = deg(D) + 1− g(X) + h1(D).

Remark 4.3. Since h1(D) is the dimension of a vector space, it is in particular nonnegative, so we obtain the
inequality h0(D) ≥ deg(D) + 1 − g(X). This means that for any divisor D of large enough degree, the space
H0(D) has positive dimension and must contain some nonzero rational function. But as mentioned previously,
for such a rational function α the divisor D−div(α) is effective and linearly equivalent to D, of the same degree
as D. Hence the class map on effective divisors of degree d is surjective, for any d ≥ g(X).

Rearraging (4.3), we obtain that for any divisor D,

(4.4) h0(D)− h1(D)− deg(D) = 1− g(X).

In particular, the left hand side is independent of the choice of divisor. In the special case where D = 0 is the
trivial divisor, we have h0(0) = 1, g(X) = h1(0) and deg(0) = 0 by definition. So (4.4) holds for D = 0. Then
it’s enough to show that the LHS of (4.4) is independent of choice of D. The following proof is based on [2],
Theorem IV.1.3.

Proof. Consider, for any point p ∈ X, the short exact sequence of sheaves on X/k

0→ L(D)→ L(D + p)→ kvp(p)→ 0

where kvp(p) is the skyscraper sheaf at the point p. Because sheaves on X have no higher cohomology, the Euler

characteristic is given by h0 − h1 in each case. But Euler characteristic is additive on short exact sequences, so

h0(D)− h1(D) + χ(kvp(p)) = h0(D + p)− h1(D + p).

Now the Euler characteristic of a skyscraper sheaf equals h0, which in this case is dimk(kvp) = deg(p). Thus
χ(D) + deg(p) = χ(D + p). We also have deg(D + p) = deg(D) + deg(p), and hence

χ(D)− deg(d) = χ(D + p)− deg(D + p)

so the LHS of (4.4) does not change when we add or subtract a point from the divisor D. But we can get from
any divisor to any other by adding and subtracting a finite set of points, so (4.4) does not depend on the divisor
D. �
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5. Serre Duality and the Canonical Divisor

When X is a Riemann surface, the space H1(D) is not just a vector space — it can be realised as H0(X,K⊗
L(−D))∨ where K is the sheaf of holomorphic 1-forms on X. Without the differential structure of a Riemann
surface it is somewhat difficult to define the sheaf K directly for a general curve X. In this section we will
construct a divisor K ∈ Div(X/k) having the property that H1(D)∨ ∼= H0(K − D) for any divisor D. This
gives a corresponding sheaf L(K) with the desired duality property. The invertible sheaf L(K) is the canonical
bundle of the curve X, and as in the Riemann surface case it follows from Riemann-Roch that it must have
degree 2g(X)− 2, and h0(K) = g(X).

Theorem 5.1 (Serre duality, [1] Thm IX.4.1). Let k be a field, and X/k a curve. There exists a divisor
K ∈ Div(X/k) having the property that H1(D)∨ ∼= H0(K −D) for every divisor D.

Any such divisor K is called a canonical divisor of the curve X, and its class in Pic(X/k) is the canonical
divisor class.

To prove Serre duality, we use the k-vector spaces H1(D)∨, D ∈ Div(X) to define a k(X)-vector space J , the
so-called space of differentials on X. To construct this space, we first need a few preliminary notions.

For two divisors D,E we define their gcd to be the divisor which has as its coefficients the minimum of
the corresponding coefficients for D and E. Similarly, we define the lcm to be the pointwise maximum of the
coefficients.

Whenever E ≤ D, we get a corresponding map on cohomology φE,D : H1(E) → H1(D) in a natural way.
This induces a dual map φ∨E,D : H1(D)∨ → H1(E)∨. Moreover, for α ∈ k(X)∗, there is an isomorphism

φDα : H1(D − div(α))
∼→ H1(D) induced from multiplication by α, for any divisor D. This gives a dual

isomorphism (φDα )∨ : H1(D)∨
∼→ H1(D − div(α))∨.

We then consider the category whose objects are groups H1(D)∨ for some divisor D, and whose morphisms
are maps φ∨E,D when E ≤ D. In this category, gcd is a pullback and lcm is a pushout. Let J be the additive
group that is obtained by taking the filtered colimit over this category. As a set J is a disjoint union of the
groups H1(D)∨, modulo the equivalence relation that elements λ1 ∈ H1(D1) and λ2 ∈ H1(D2) are equal
whenever there exists some divisor C with C ≤ D1, D2 such that

(λ1 ◦ φC,D1
=)φ∨C,D1

(λ1) = φ∨C,D2
(λ2)(= λ2 ◦ φC,D2

).

To add two elements j1, j2 ∈ J , pick a divisor corresponding to each so that ji ∈ H1(Di)
∨. Then for any divisor

C ≤ D1, D2 we set j1 + j2 = j1 ◦ φC,D1
+ j2 ◦ φC,D2

. We could for example choose C = gcd(D1, D2), but any
choice of C gives a result equivalent in J .

Finally, J has a natural k(X)-vector space structure coming from the maps φDα . Define α · j to be the
functional λ ◦ φDα , with λ ∈ H1(D)∨ any representative for j ∈ J .

Lemma 5.2 ([1], Thm IX.4.5). J is a k(X)-vector space of dimension 1.

Using the space J , we can construct the class in Pic(X/k) of the canonical divisor as follows.

Theorem 5.3 ([1], Thm IX.4.6). Let k be a field, X/k a curve. For any nonzero j ∈ J , there exists a divisor
K(j) ∈ Div(X/k) satisfying:

(i) j can be represented by λ ∈ H1(K(j))∨;
(ii) K(j) is maximal with this property, meaning that for any E satisfying (i), K(j) ≥ E.

Moreover, for α ∈ k(X)∗ we have K(αj) = K(j) + div(α), and the class K(j) in Pic(X) is independent of
choice of j. This is the canonical class of X.

Proof sketch. Let j ∈ J .
First, one shows that h1(0) ≥ h0(D) for any such divisor D, by showing that a basis for H0(D) gives rise to

a linearly independent set in H1(0)∨. Then by Riemann-Roch,

deg(d) ≤ h0(D) + g − 1 ≤ 2g − 1

since h1(0) = g. Hence the divisors satisfying (i) are bounded in degree, so choose D to have maximal degree
among such divisors.

Next, one shows that if D and E satisfy (i) then so must gcd(D,E) and lcm(D,E). But since D has maximal
degree among divisors satisfying (i), and deg(lcm(D,E)) ≥ deg(D), we find that D = lcm(D,E). In particular,
D ≥ E. Therefore D satisfies both (i) and (ii). Note that this argument shows there is a unique divisor of
maximal degree satisfying (i).

Since λ ∈ H1(K(j))∨ representing j gives a map α · λ ∈ H1(K(j) − div(α))∨ representing αj by the k(X)-
action, we have by (ii) that K(αj) ≥ K(j)− div(α). Applying the same argument to α−1 gives equality.

Now since J has dimension 1, any two elements j, j′ differ by scalar multiplication, giving j′ = αj. Hence
K(j′) = K(j)− div(α) and so any two such divisors lie in the same class in Pic(X/k). This gives a well-defined
canonical class, independent of j. �
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Serre duality follows directly from this theorem, with any choice of K = K(j).

Proof of Serre duality, Theorem 5.1. Let D ∈ Div(X), and fix nonzero j ∈ J . Set K := K(j). We show that
the map

δ : H0(D)→ Homk(H1(K −D), H1(K))

α 7→ φKα ◦ φK−D,K−div(α) for α 6= 0

is an isomorphism. First, this is well-defined since for α ∈ H0(D) we have div(α) ≤ D and soK−div(α) ≥ K−D.
Then we are simply taking the composition

H1(K −D)
φK−D,K−div(α)−→ H1(K − div(α))

φKα−→ H1(K)

Assuming for now that δ is an isomorphism, take D = 0. This gives

H0(0)
∼→ Homk(H1(K), H1(K))

and so we conclude that h1(K) = 1, because h0(0) = 1. Now for any D, we can identify Homk(H1(K −
D), H1(K)) with H1(K−D)∨. Explicitly, we do this by postcomposing with a fixed λ ∈ H1(K)∨. Then setting
D = K −D′, we have an isomorphism

H0(K −D′) ∼→ Homk(H1(D′), H1(K)) ∼= H1(D′)∨

and so H0(K −D′) ∼= H1(D′) for every D′ ∈ Div(X/k).
So it’s enough to show that δ is an isomorphism. Let λ ∈ H1(K) represent j. For injectivity, suppose

δ(α) = 0. If α 6= 0, we have
0 = λ ◦ δ(α) = λ ◦ φKα ◦ φK−D,K−div(α)

and by the equivalence relation on J , this means α · j = λ ◦ φKα = 0 in J . But this implies α = 0, because j is
nonzero.

For surjectivity, let ψ ∈ Homk(H1(K−D), H1(K)) be nonzero, and then λ ◦ψ ∈ H1(K−D)∨. Because J is
1-dimensional, there exists α ∈ k(X)∗ with αλ = λ ◦ψ ∈ J . We know K − div(α) is the maximal divisor which
represents αλ, so we must have K −D ≤ K − div(α) because K −D also represents αλ. Hence α ∈ H0(D),
and moreover

λ ◦ ψ = λ ◦ φKα ◦ φK−D,K−div(α).
Thus ψ = δ(α) lies in the image. �

We know already that for any canonical divisor K we must have deg(K) = 2g − 2 and h0(K) = g. But in
fact, these two properties fully characterise canonical divisors.

Lemma 5.4 ([1], Thm IX.5.10). Let X/k be a curve of genus g, and D ∈ Div(X/k) be such that deg(D) = 2g−2
and h0(D) = g. Then D is a canonical divisor.

Proof. Let K be a canonical divisor, so h0(D) = deg(D) + 1− g + h0(K −D). From the hypotheses, we must
have h0(K −D) = 1. Choose nonzero α ∈ h0(K −D), so that K −D − div(α) ≥ 0. The degrees of both sides
are equal, so this must be an equality, and hence K−D = div(α) is principal. So D lies in the canonical divisor
class. �
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